Properties

Label 32490.bl
Number of curves $4$
Conductor $32490$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("32490.bl1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32490.bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
32490.bl1 32490bp4 [1, -1, 1, -9877028, 11950257597] [2] 1105920  
32490.bl2 32490bp3 [1, -1, 1, -714848, 123949581] [2] 1105920  
32490.bl3 32490bp2 [1, -1, 1, -617378, 186798237] [2, 2] 552960  
32490.bl4 32490bp1 [1, -1, 1, -32558, 3866541] [2] 276480 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 32490.bl have rank \(0\).

Modular form 32490.2.a.bl

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} - q^{5} + 4q^{7} + q^{8} - q^{10} + 4q^{11} + 2q^{13} + 4q^{14} + q^{16} + 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.