Minimal Weierstrass equation
\(y^2+y=x^3-30324x-2162300\)
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \(\left(\frac{817}{4}, \frac{3245}{8}\right)\) ![]() |
\(\hat{h}(P)\) | ≈ | $3.0674714941539549255788330565$ |
Integral points
\(\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 3249 \) | = | \(3^{2} \cdot 19^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-235239331680891 \) | = | \(-1 \cdot 3^{6} \cdot 19^{9} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{89915392}{6859} \) | = | \(-1 \cdot 2^{18} \cdot 7^{3} \cdot 19^{-3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(1.5056586465745380335246085995\dots\) | ||
Stable Faltings height: | \(-0.51586698734273704217752773491\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(3.0674714941539549255788330565\dots\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.18010457648394080991294602404\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 4 \) = \( 2\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 8640 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 2.2098626173246366794409076156276844651 \)
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(2\) | \(I_0^{*}\) | Additive | -1 | 2 | 6 | 0 |
\(19\) | \(2\) | \(I_3^{*}\) | Additive | -1 | 2 | 9 | 3 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | Cs |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | add | ordinary | ordinary | ordinary | ordinary | ordinary | add | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | ? | - | 1 | 1 | 1 | 1 | 1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | ? | - | 0 | 0 | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 3249.d
consists of 2 curves linked by isogenies of
degrees dividing 9.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/3\Z\) | 2.2.57.1-19.1-a2 |
$2$ | \(\Q(\sqrt{-19}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.76.1 | \(\Z/2\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.2.2963088.1 | \(\Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | 12.0.8779890495744.1 | \(\Z/6\Z \times \Z/6\Z\) | Not in database |
$18$ | 18.6.298810123329025654919217.1 | \(\Z/9\Z\) | Not in database |
$18$ | 18.0.38588388032760475707449435212371.2 | \(\Z/9\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.