Properties

Label 32487n
Number of curves $4$
Conductor $32487$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 32487n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32487n do not have complex multiplication.

Modular form 32487.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - 2 q^{5} - q^{6} + 3 q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} - q^{13} - 2 q^{15} - q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 32487n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.d4 32487n1 \([1, 0, 0, -4999, 110480]\) \(117433042273/22801233\) \(2682542261217\) \([2]\) \(61440\) \(1.1018\) \(\Gamma_0(N)\)-optimal
32487.d2 32487n2 \([1, 0, 0, -75804, 8026479]\) \(409460675852593/21538881\) \(2534027810769\) \([2, 2]\) \(122880\) \(1.4483\)  
32487.d3 32487n3 \([1, 0, 0, -71639, 8948610]\) \(-345608484635233/94427721297\) \(-11109326982870753\) \([2]\) \(245760\) \(1.7949\)  
32487.d1 32487n4 \([1, 0, 0, -1212849, 514011504]\) \(1677087406638588673/4641\) \(546009009\) \([2]\) \(245760\) \(1.7949\)