Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-68062x+4629995\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-68062xz^2+4629995z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-88208379x+216281671830\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(-1, 2168\right)\)
|
$\hat{h}(P)$ | ≈ | $1.8213397424829705270113575285$ |
Torsion generators
\( \left(-290, 145\right) \), \( \left(74, -37\right) \)
Integral points
\( \left(-290, 145\right) \), \( \left(-115, 3365\right) \), \( \left(-115, -3250\right) \), \( \left(-1, 2168\right) \), \( \left(-1, -2167\right) \), \( \left(74, -37\right) \), \( \left(347, 4604\right) \), \( \left(347, -4951\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 32487 \) | = | $3 \cdot 7^{2} \cdot 13 \cdot 17$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $10895337004094361 $ | = | $3^{8} \cdot 7^{6} \cdot 13^{2} \cdot 17^{4} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{296380748763217}{92608836489} \) | = | $3^{-8} \cdot 13^{-2} \cdot 17^{-4} \cdot 61^{3} \cdot 1093^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.7815374295105618717059547264\dots$ | ||
Stable Faltings height: | $0.80858235498290521915327835468\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.8213397424829705270113575285\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.37449772672391408388559631081\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 128 $ = $ 2^{3}\cdot2^{2}\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 5.4567007452143323777180998356 $ |
Modular invariants
Modular form 32487.2.a.f
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 196608 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $8$ | $I_{8}$ | Split multiplicative | -1 | 1 | 8 | 8 |
$7$ | $4$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
$13$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$17$ | $2$ | $I_{4}$ | Non-split multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.24.0.13 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | split | ord | add | ord | nonsplit | nonsplit | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 8 | 4 | 3 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 3 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 32487l
consists of 6 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.17555190016.1 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.13142191046656.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.