Properties

Label 32487d
Number of curves $1$
Conductor $32487$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32487d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.n1 32487d1 \([0, -1, 1, -142704, 20797013]\) \(-2731787761881088/19171971\) \(-2255563216179\) \([]\) \(198144\) \(1.5497\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32487d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 32487d do not have complex multiplication.

Modular form 32487.2.a.d

sage: E.q_eigenform(10)
 
\(q + 2q^{2} - q^{3} + 2q^{4} + 3q^{5} - 2q^{6} + q^{9} + 6q^{10} + 2q^{11} - 2q^{12} - q^{13} - 3q^{15} - 4q^{16} - q^{17} + 2q^{18} - q^{19} + O(q^{20})\)  Toggle raw display