Properties

Label 32487c
Number of curves $1$
Conductor $32487$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 32487c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32487c do not have complex multiplication.

Modular form 32487.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} + q^{9} - 4 q^{10} + 5 q^{11} - 2 q^{12} - q^{13} + 2 q^{15} - 4 q^{16} - q^{17} + 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 32487c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.k1 32487c1 \([0, -1, 1, -14184, 654905]\) \(6441016595550208/511270461\) \(25052252589\) \([]\) \(84480\) \(1.0417\) \(\Gamma_0(N)\)-optimal