Properties

Label 324870.dd
Number of curves $8$
Conductor $324870$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dd1")
 
E.isogeny_class()
 

Elliptic curves in class 324870.dd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
324870.dd1 324870dd7 \([1, 1, 1, -110667869061, 14170299110903949]\) \(1274090022584975661628188489514561/14072533302105480763470\) \(1655619470459407706341482030\) \([2]\) \(1207959552\) \(4.7923\)  
324870.dd2 324870dd5 \([1, 1, 1, -6922258911, 221037854331489]\) \(311802066473807207098058600161/1033693082103011001480900\) \(121612957416337141313226404100\) \([2, 2]\) \(603979776\) \(4.4457\)  
324870.dd3 324870dd4 \([1, 1, 1, -6811753131, -216392475356247]\) \(297106512928238351998640242081/3977028808593750000\) \(467893462302246093750000\) \([2]\) \(301989888\) \(4.0992\)  
324870.dd4 324870dd8 \([1, 1, 1, -3939856761, 412769330789829]\) \(-57487943130312093140621093761/592356094985924086700006670\) \(-69690102218998982876169084718830\) \([2]\) \(1207959552\) \(4.7923\)  
324870.dd5 324870dd3 \([1, 1, 1, -624558411, 86810909289]\) \(229010110533436633465952161/132501160769452503210000\) \(15588629063365317550153290000\) \([2, 2]\) \(301989888\) \(4.0992\)  
324870.dd6 324870dd2 \([1, 1, 1, -426108411, -3375030270711]\) \(72727020009972527154752161/265361167808100000000\) \(31219476031455156900000000\) \([2, 2]\) \(150994944\) \(3.7526\)  
324870.dd7 324870dd1 \([1, 1, 1, -14602491, -100595364087]\) \(-2926956820564562516641/35459588343029760000\) \(-4171785108969108234240000\) \([2]\) \(75497472\) \(3.4060\) \(\Gamma_0(N)\)-optimal
324870.dd8 324870dd6 \([1, 1, 1, 2497942089, 697572007089]\) \(14651516183052242700771495839/8480668142378708755560900\) \(-997742126282712706382984324100\) \([2]\) \(603979776\) \(4.4457\)  

Rank

sage: E.rank()
 

The elliptic curves in class 324870.dd have rank \(1\).

Complex multiplication

The elliptic curves in class 324870.dd do not have complex multiplication.

Modular form 324870.2.a.dd

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} - q^{13} + q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 16 & 4 & 4 & 8 & 16 & 8 \\ 2 & 1 & 8 & 2 & 2 & 4 & 8 & 4 \\ 16 & 8 & 1 & 16 & 4 & 2 & 4 & 8 \\ 4 & 2 & 16 & 1 & 4 & 8 & 16 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 2 & 8 & 2 & 1 & 2 & 4 \\ 16 & 8 & 4 & 16 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.