Properties

Label 32487.p
Number of curves $1$
Conductor $32487$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32487.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.p1 32487p1 \([0, 1, 1, -34414, -2466383]\) \(15957372928/17901\) \(5056589432349\) \([]\) \(118272\) \(1.3517\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32487.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 32487.p do not have complex multiplication.

Modular form 32487.2.a.p

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{9} - 4 q^{10} + q^{11} + 2 q^{12} - q^{13} - 2 q^{15} - 4 q^{16} - q^{17} + 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display