Properties

Label 32487.o
Number of curves $1$
Conductor $32487$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32487.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.o1 32487j1 \([0, 1, 1, -2564, 43397]\) \(776703004672/97144749\) \(233244542349\) \([]\) \(84672\) \(0.91086\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32487.o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 32487.o do not have complex multiplication.

Modular form 32487.2.a.o

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{9} - 4 q^{10} - 5 q^{11} + 2 q^{12} - q^{13} - 2 q^{15} - 4 q^{16} - q^{17} + 2 q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display