Properties

Label 32487.k
Number of curves $1$
Conductor $32487$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32487.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32487.k1 32487c1 \([0, -1, 1, -14184, 654905]\) \(6441016595550208/511270461\) \(25052252589\) \([]\) \(84480\) \(1.0417\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32487.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 32487.k do not have complex multiplication.

Modular form 32487.2.a.k

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} + q^{9} - 4 q^{10} + 5 q^{11} - 2 q^{12} - q^{13} + 2 q^{15} - 4 q^{16} - q^{17} + 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display