# Properties

 Label 32487.e6 Conductor $32487$ Discriminant $-1.278\times 10^{19}$ j-invariant $$\frac{158346567380527343}{108665074944153}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2+xy=x^3+552278x+68146637$$ y^2+xy=x^3+552278x+68146637 (homogenize, simplify) $$y^2z+xyz=x^3+552278xz^2+68146637z^3$$ y^2z+xyz=x^3+552278xz^2+68146637z^3 (dehomogenize, simplify) $$y^2=x^3+715752261x+3177302239062$$ y^2=x^3+715752261x+3177302239062 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 0, 0, 552278, 68146637])

gp: E = ellinit([1, 0, 0, 552278, 68146637])

magma: E := EllipticCurve([1, 0, 0, 552278, 68146637]);

oscar: E = EllipticCurve([1, 0, 0, 552278, 68146637])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

$$\Z \oplus \Z/{2}\Z$$

magma: MordellWeilGroup(E);

### Infinite order Mordell-Weil generator and height

 $P$ = $$\left(1061, 42467\right)$$ (1061, 42467) $\hat{h}(P)$ ≈ $2.0642626470206162648123084785$

sage: E.gens()

magma: Generators(E);

gp: E.gen

## Torsion generators

$$\left(-\frac{481}{4}, \frac{481}{8}\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

## Integral points

$$\left(1061, 42467\right)$$, $$\left(1061, -43528\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$32487$$ = $3 \cdot 7^{2} \cdot 13 \cdot 17$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-12784337402104656297$ = $-1 \cdot 3^{8} \cdot 7^{14} \cdot 13^{2} \cdot 17$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{158346567380527343}{108665074944153}$$ = $3^{-8} \cdot 7^{-8} \cdot 13^{-2} \cdot 17^{-1} \cdot 541007^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.3548417573043155541679270421\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $1.3818866827766589016152506704\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $1$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $2.0642626470206162648123084785\dots$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.14169147262354586618715938905\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $64$  = $2^{3}\cdot2^{2}\cdot2\cdot1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $2$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L'(E,1)$ ≈ $4.6798146294100795709226626654$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 4.679814629 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.141691 \cdot 2.064263 \cdot 64}{2^2} \approx 4.679814629$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("anayltic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

Modular form 32487.2.a.e

$$q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 3 q^{8} + q^{9} - 2 q^{10} - 4 q^{11} - q^{12} - q^{13} + 2 q^{15} - q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

For more coefficients, see the Downloads section to the right.

Modular degree: 589824
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$7$ $4$ $I_{8}^{*}$ Additive -1 2 14 8
$13$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$17$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.12.0.5

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[8752, 5, 21795, 74242], [13, 16, 18308, 18249], [1, 16, 0, 1], [49505, 16, 24760, 129], [42431, 74240, 42424, 74127], [74241, 16, 74240, 17], [64982, 18569, 9285, 37130], [15, 2, 74158, 74243], [1, 0, 16, 1], [13, 16, 34016, 73941], [5, 4, 74252, 74253]]

GL(2,Integers(74256)).subgroup(gens)

Gens := [[8752, 5, 21795, 74242], [13, 16, 18308, 18249], [1, 16, 0, 1], [49505, 16, 24760, 129], [42431, 74240, 42424, 74127], [74241, 16, 74240, 17], [64982, 18569, 9285, 37130], [15, 2, 74158, 74243], [1, 0, 16, 1], [13, 16, 34016, 73941], [5, 4, 74252, 74253]];

sub<GL(2,Integers(74256))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$74256 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \cdot 17$$, index $192$, genus $1$, and generators

$\left(\begin{array}{rr} 8752 & 5 \\ 21795 & 74242 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 18308 & 18249 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 49505 & 16 \\ 24760 & 129 \end{array}\right),\left(\begin{array}{rr} 42431 & 74240 \\ 42424 & 74127 \end{array}\right),\left(\begin{array}{rr} 74241 & 16 \\ 74240 & 17 \end{array}\right),\left(\begin{array}{rr} 64982 & 18569 \\ 9285 & 37130 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 74158 & 74243 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 34016 & 73941 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 74252 & 74253 \end{array}\right)$.

The torsion field $K:=\Q(E[74256])$ is a degree-$25429452313853952$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/74256\Z)$.

## $p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ord split ord add ord nonsplit nonsplit ord ss ord ss ord ord ord ss 8 6 3 - 1 1 1 1 1,1 1 1,1 1 1 1 1,1 1 0 0 - 0 0 0 0 0,0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 32487.e consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-17})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{7})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-119})$$ $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{7}, \sqrt{-17})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{7}, \sqrt{442})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{7}, \sqrt{-26})$$ $$\Z/8\Z$$ Not in database $8$ deg 8 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.927268850704.3 $$\Z/8\Z$$ Not in database $8$ deg 8 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ deg 8 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ deg 16 $$\Z/16\Z$$ Not in database $16$ deg 16 $$\Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.