Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
32487.a1 |
32487i1 |
32487.a |
32487i |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7^{7} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.099161187$ |
$1$ |
|
$32$ |
$105984$ |
$1.111115$ |
$-325660672/40000779$ |
$[0, -1, 1, -702, 104852]$ |
\(y^2+y=x^3-x^2-702x+104852\) |
182.2.0.? |
32487.b1 |
32487g2 |
32487.b |
32487g |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{8} \cdot 7^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1.892332799$ |
$1$ |
|
$4$ |
$46080$ |
$1.102852$ |
$104154702625/24649677$ |
$[1, 1, 1, -4803, -100500]$ |
\(y^2+xy+y=x^3+x^2-4803x-100500\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
32487.b2 |
32487g1 |
32487.b |
32487g |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{6} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$0.946166399$ |
$1$ |
|
$7$ |
$23040$ |
$0.756278$ |
$3981876625/232713$ |
$[1, 1, 1, -1618, 23078]$ |
\(y^2+xy+y=x^3+x^2-1618x+23078\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
32487.c1 |
32487b1 |
32487.c |
32487b |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{5} \cdot 7^{7} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$107520$ |
$1.221601$ |
$10418796526321/6390657$ |
$[1, 1, 1, -22296, -1290024]$ |
\(y^2+xy+y=x^3+x^2-22296x-1290024\) |
2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.? |
32487.c2 |
32487b2 |
32487.c |
32487b |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{10} \cdot 7^{8} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$215040$ |
$1.568176$ |
$-5602762882081/8312741073$ |
$[1, 1, 1, -18131, -1781494]$ |
\(y^2+xy+y=x^3+x^2-18131x-1781494\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
32487.d1 |
32487n4 |
32487.d |
32487n |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3 \cdot 7^{7} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$37128$ |
$48$ |
$0$ |
$4.415866576$ |
$1$ |
|
$0$ |
$245760$ |
$1.794897$ |
$1677087406638588673/4641$ |
$[1, 0, 0, -1212849, 514011504]$ |
\(y^2+xy=x^3-1212849x+514011504\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 136.12.0.?, 156.12.0.?, $\ldots$ |
32487.d2 |
32487n2 |
32487.d |
32487n |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{8} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$18564$ |
$48$ |
$0$ |
$2.207933288$ |
$1$ |
|
$6$ |
$122880$ |
$1.448324$ |
$409460675852593/21538881$ |
$[1, 0, 0, -75804, 8026479]$ |
\(y^2+xy=x^3-75804x+8026479\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 68.12.0.a.1, 156.12.0.?, 476.24.0.?, $\ldots$ |
32487.d3 |
32487n3 |
32487.d |
32487n |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{4} \cdot 7^{10} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$37128$ |
$48$ |
$0$ |
$1.103966644$ |
$1$ |
|
$6$ |
$245760$ |
$1.794897$ |
$-345608484635233/94427721297$ |
$[1, 0, 0, -71639, 8948610]$ |
\(y^2+xy=x^3-71639x+8948610\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 68.12.0.h.1, 312.12.0.?, $\ldots$ |
32487.d4 |
32487n1 |
32487.d |
32487n |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3 \cdot 7^{7} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$37128$ |
$48$ |
$0$ |
$4.415866576$ |
$1$ |
|
$1$ |
$61440$ |
$1.101751$ |
$117433042273/22801233$ |
$[1, 0, 0, -4999, 110480]$ |
\(y^2+xy=x^3-4999x+110480\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 136.12.0.?, 156.12.0.?, $\ldots$ |
32487.e1 |
32487m6 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{8} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$74256$ |
$192$ |
$1$ |
$8.257050588$ |
$1$ |
|
$2$ |
$589824$ |
$2.354843$ |
$7389727131216686257/6115533215337$ |
$[1, 0, 0, -1988372, 1078244103]$ |
\(y^2+xy=x^3-1988372x+1078244103\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.7, 28.12.0-4.c.1.1, $\ldots$ |
32487.e2 |
32487m4 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{10} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$37128$ |
$192$ |
$1$ |
$4.128525294$ |
$1$ |
|
$6$ |
$294912$ |
$2.008266$ |
$3275619238041697/1605271262049$ |
$[1, 0, 0, -151607, 8879520]$ |
\(y^2+xy=x^3-151607x+8879520\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.2, 28.24.0-4.b.1.1, 68.24.0.c.1, $\ldots$ |
32487.e3 |
32487m2 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{8} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$37128$ |
$192$ |
$1$ |
$8.257050588$ |
$1$ |
|
$2$ |
$147456$ |
$1.661695$ |
$495909170514577/6224736609$ |
$[1, 0, 0, -80802, -8750925]$ |
\(y^2+xy=x^3-80802x-8750925\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.3, 28.24.0-4.b.1.3, 104.24.0.?, $\ldots$ |
32487.e4 |
32487m1 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3 \cdot 7^{7} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$74256$ |
$192$ |
$1$ |
$16.51410117$ |
$1$ |
|
$1$ |
$73728$ |
$1.315121$ |
$491411892194497/78897$ |
$[1, 0, 0, -80557, -8807128]$ |
\(y^2+xy=x^3-80557x-8807128\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 28.12.0-4.c.1.2, 48.24.0-8.n.1.5, $\ldots$ |
32487.e5 |
32487m3 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3 \cdot 7^{7} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$74256$ |
$192$ |
$1$ |
$16.51410117$ |
$1$ |
|
$0$ |
$294912$ |
$2.008266$ |
$-2533811507137/1904381781393$ |
$[1, 0, 0, -13917, -22783398]$ |
\(y^2+xy=x^3-13917x-22783398\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.8, 28.12.0-4.c.1.2, $\ldots$ |
32487.e6 |
32487m5 |
32487.e |
32487m |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 7^{14} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$74256$ |
$192$ |
$1$ |
$2.064262647$ |
$1$ |
|
$2$ |
$589824$ |
$2.354843$ |
$158346567380527343/108665074944153$ |
$[1, 0, 0, 552278, 68146637]$ |
\(y^2+xy=x^3+552278x+68146637\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 28.12.0-4.c.1.1, 48.24.0-8.n.1.3, $\ldots$ |
32487.f1 |
32487l6 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{16} \cdot 7^{6} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.6 |
2B |
$24752$ |
$192$ |
$1$ |
$0.910669871$ |
$1$ |
|
$6$ |
$393216$ |
$2.128113$ |
$908031902324522977/161726530797$ |
$[1, 0, 0, -988527, 378154692]$ |
\(y^2+xy=x^3-988527x+378154692\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.f.2, 26.6.0.b.1, $\ldots$ |
32487.f2 |
32487l4 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{8} \cdot 7^{6} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.13 |
2Cs |
$12376$ |
$192$ |
$1$ |
$1.821339742$ |
$1$ |
|
$8$ |
$196608$ |
$1.781538$ |
$296380748763217/92608836489$ |
$[1, 0, 0, -68062, 4629995]$ |
\(y^2+xy=x^3-68062x+4629995\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.2, 28.24.0-4.b.1.1, 52.24.0.c.1, $\ldots$ |
32487.f3 |
32487l2 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{6} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.15 |
2Cs |
$12376$ |
$192$ |
$1$ |
$3.642679484$ |
$1$ |
|
$6$ |
$98304$ |
$1.434963$ |
$17806161424897/668584449$ |
$[1, 0, 0, -26657, -1622160]$ |
\(y^2+xy=x^3-26657x-1622160\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.1, 28.24.0-4.b.1.3, 56.48.0-8.d.1.9, $\ldots$ |
32487.f4 |
32487l1 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.7 |
2B |
$24752$ |
$192$ |
$1$ |
$7.285358969$ |
$1$ |
|
$1$ |
$49152$ |
$1.088390$ |
$17319700013617/25857$ |
$[1, 0, 0, -26412, -1654353]$ |
\(y^2+xy=x^3-26412x-1654353\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.f.1, 28.12.0-4.c.1.2, $\ldots$ |
32487.f5 |
32487l3 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7^{6} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.92 |
2B |
$24752$ |
$192$ |
$1$ |
$7.285358969$ |
$1$ |
|
$2$ |
$196608$ |
$1.781538$ |
$1193377118543/124806800313$ |
$[1, 0, 0, 10828, -5812983]$ |
\(y^2+xy=x^3+10828x-5812983\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 28.12.0-4.c.1.2, 56.48.0-8.ba.1.8, $\ldots$ |
32487.f6 |
32487l5 |
32487.f |
32487l |
$6$ |
$8$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{4} \cdot 7^{6} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.91 |
2B |
$24752$ |
$192$ |
$1$ |
$3.642679484$ |
$1$ |
|
$2$ |
$393216$ |
$2.128113$ |
$6439735268725823/7345472585373$ |
$[1, 0, 0, 189923, 31408838]$ |
\(y^2+xy=x^3+189923x+31408838\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 28.12.0-4.c.1.1, 52.12.0.h.1, $\ldots$ |
32487.g1 |
32487e1 |
32487.g |
32487e |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7^{3} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.210309761$ |
$1$ |
|
$6$ |
$20992$ |
$0.595311$ |
$-239251750912/9771957$ |
$[0, -1, 1, -905, 11150]$ |
\(y^2+y=x^3-x^2-905x+11150\) |
182.2.0.? |
32487.h1 |
32487q1 |
32487.h |
32487q |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7^{9} \cdot 13 \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$146944$ |
$1.568266$ |
$-239251750912/9771957$ |
$[0, 1, 1, -44361, -3735826]$ |
\(y^2+y=x^3+x^2-44361x-3735826\) |
182.2.0.? |
32487.i1 |
32487f1 |
32487.i |
32487f |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{3} \cdot 7^{7} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$8.497837884$ |
$1$ |
|
$1$ |
$36864$ |
$0.844235$ |
$10431681625/710073$ |
$[1, 1, 0, -2230, -39017]$ |
\(y^2+xy=x^3+x^2-2230x-39017\) |
2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.? |
32487.i2 |
32487f2 |
32487.i |
32487f |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{6} \cdot 7^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$4.248918942$ |
$1$ |
|
$0$ |
$73728$ |
$1.190809$ |
$6804992375/102626433$ |
$[1, 1, 0, 1935, -163134]$ |
\(y^2+xy=x^3+x^2+1935x-163134\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
32487.j1 |
32487r2 |
32487.j |
32487r |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{12} \cdot 7^{6} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$1.449699$ |
$3885442650361/1996623837$ |
$[1, 0, 1, -16049, 260579]$ |
\(y^2+xy+y=x^3-16049x+260579\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
32487.j2 |
32487r1 |
32487.j |
32487r |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{6} \cdot 7^{6} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$103680$ |
$1.103127$ |
$2000852317801/2094417$ |
$[1, 0, 1, -12864, 559969]$ |
\(y^2+xy+y=x^3-12864x+559969\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
32487.k1 |
32487c1 |
32487.k |
32487c |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{2} \cdot 13^{5} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$84480$ |
$1.041748$ |
$6441016595550208/511270461$ |
$[0, -1, 1, -14184, 654905]$ |
\(y^2+y=x^3-x^2-14184x+654905\) |
442.2.0.? |
32487.l1 |
32487h1 |
32487.l |
32487h |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{10} \cdot 13^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$592704$ |
$1.883810$ |
$776703004672/97144749$ |
$[0, -1, 1, -125652, -15136549]$ |
\(y^2+y=x^3-x^2-125652x-15136549\) |
442.2.0.? |
32487.m1 |
32487a1 |
32487.m |
32487a |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{4} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$2.755768110$ |
$1$ |
|
$0$ |
$16896$ |
$0.378708$ |
$15957372928/17901$ |
$[0, -1, 1, -702, 7391]$ |
\(y^2+y=x^3-x^2-702x+7391\) |
442.2.0.? |
32487.n1 |
32487d1 |
32487.n |
32487d |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{6} \cdot 7^{7} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$198144$ |
$1.549738$ |
$-2731787761881088/19171971$ |
$[0, -1, 1, -142704, 20797013]$ |
\(y^2+y=x^3-x^2-142704x+20797013\) |
182.2.0.? |
32487.o1 |
32487j1 |
32487.o |
32487j |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{4} \cdot 13^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$84672$ |
$0.910855$ |
$776703004672/97144749$ |
$[0, 1, 1, -2564, 43397]$ |
\(y^2+y=x^3+x^2-2564x+43397\) |
442.2.0.? |
32487.p1 |
32487p1 |
32487.p |
32487p |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{10} \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$8.450689736$ |
$1$ |
|
$0$ |
$118272$ |
$1.351664$ |
$15957372928/17901$ |
$[0, 1, 1, -34414, -2466383]$ |
\(y^2+y=x^3+x^2-34414x-2466383\) |
442.2.0.? |
32487.q1 |
32487o1 |
32487.q |
32487o |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{22} \cdot 7^{7} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.043068911$ |
$1$ |
|
$0$ |
$1571328$ |
$2.536655$ |
$-1302227927110660096/825290486657091$ |
$[0, 1, 1, -1114766, -656107273]$ |
\(y^2+y=x^3+x^2-1114766x-656107273\) |
182.2.0.? |
32487.r1 |
32487k1 |
32487.r |
32487k |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{8} \cdot 13^{5} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$442$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$591360$ |
$2.014702$ |
$6441016595550208/511270461$ |
$[0, 1, 1, -695032, -223242449]$ |
\(y^2+y=x^3+x^2-695032x-223242449\) |
442.2.0.? |