Learn more

Refine search


Results (35 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
32487.a1 32487.a \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $2$ $\mathsf{trivial}$ $0.099161187$ $[0, -1, 1, -702, 104852]$ \(y^2+y=x^3-x^2-702x+104852\)
32487.b1 32487.b \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.892332799$ $[1, 1, 1, -4803, -100500]$ \(y^2+xy+y=x^3+x^2-4803x-100500\)
32487.b2 32487.b \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.946166399$ $[1, 1, 1, -1618, 23078]$ \(y^2+xy+y=x^3+x^2-1618x+23078\)
32487.c1 32487.c \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -22296, -1290024]$ \(y^2+xy+y=x^3+x^2-22296x-1290024\)
32487.c2 32487.c \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -18131, -1781494]$ \(y^2+xy+y=x^3+x^2-18131x-1781494\)
32487.d1 32487.d \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.415866576$ $[1, 0, 0, -1212849, 514011504]$ \(y^2+xy=x^3-1212849x+514011504\)
32487.d2 32487.d \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.207933288$ $[1, 0, 0, -75804, 8026479]$ \(y^2+xy=x^3-75804x+8026479\)
32487.d3 32487.d \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $1.103966644$ $[1, 0, 0, -71639, 8948610]$ \(y^2+xy=x^3-71639x+8948610\)
32487.d4 32487.d \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.415866576$ $[1, 0, 0, -4999, 110480]$ \(y^2+xy=x^3-4999x+110480\)
32487.e1 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $8.257050588$ $[1, 0, 0, -1988372, 1078244103]$ \(y^2+xy=x^3-1988372x+1078244103\)
32487.e2 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.128525294$ $[1, 0, 0, -151607, 8879520]$ \(y^2+xy=x^3-151607x+8879520\)
32487.e3 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.257050588$ $[1, 0, 0, -80802, -8750925]$ \(y^2+xy=x^3-80802x-8750925\)
32487.e4 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $16.51410117$ $[1, 0, 0, -80557, -8807128]$ \(y^2+xy=x^3-80557x-8807128\)
32487.e5 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $16.51410117$ $[1, 0, 0, -13917, -22783398]$ \(y^2+xy=x^3-13917x-22783398\)
32487.e6 32487.e \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $2.064262647$ $[1, 0, 0, 552278, 68146637]$ \(y^2+xy=x^3+552278x+68146637\)
32487.f1 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.910669871$ $[1, 0, 0, -988527, 378154692]$ \(y^2+xy=x^3-988527x+378154692\)
32487.f2 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.821339742$ $[1, 0, 0, -68062, 4629995]$ \(y^2+xy=x^3-68062x+4629995\)
32487.f3 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.642679484$ $[1, 0, 0, -26657, -1622160]$ \(y^2+xy=x^3-26657x-1622160\)
32487.f4 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $7.285358969$ $[1, 0, 0, -26412, -1654353]$ \(y^2+xy=x^3-26412x-1654353\)
32487.f5 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $7.285358969$ $[1, 0, 0, 10828, -5812983]$ \(y^2+xy=x^3+10828x-5812983\)
32487.f6 32487.f \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $3.642679484$ $[1, 0, 0, 189923, 31408838]$ \(y^2+xy=x^3+189923x+31408838\)
32487.g1 32487.g \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.210309761$ $[0, -1, 1, -905, 11150]$ \(y^2+y=x^3-x^2-905x+11150\)
32487.h1 32487.h \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -44361, -3735826]$ \(y^2+y=x^3+x^2-44361x-3735826\)
32487.i1 32487.i \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $8.497837884$ $[1, 1, 0, -2230, -39017]$ \(y^2+xy=x^3+x^2-2230x-39017\)
32487.i2 32487.i \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $4.248918942$ $[1, 1, 0, 1935, -163134]$ \(y^2+xy=x^3+x^2+1935x-163134\)
32487.j1 32487.j \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -16049, 260579]$ \(y^2+xy+y=x^3-16049x+260579\)
32487.j2 32487.j \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -12864, 559969]$ \(y^2+xy+y=x^3-12864x+559969\)
32487.k1 32487.k \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -14184, 654905]$ \(y^2+y=x^3-x^2-14184x+654905\)
32487.l1 32487.l \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -125652, -15136549]$ \(y^2+y=x^3-x^2-125652x-15136549\)
32487.m1 32487.m \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.755768110$ $[0, -1, 1, -702, 7391]$ \(y^2+y=x^3-x^2-702x+7391\)
32487.n1 32487.n \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -142704, 20797013]$ \(y^2+y=x^3-x^2-142704x+20797013\)
32487.o1 32487.o \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -2564, 43397]$ \(y^2+y=x^3+x^2-2564x+43397\)
32487.p1 32487.p \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $8.450689736$ $[0, 1, 1, -34414, -2466383]$ \(y^2+y=x^3+x^2-34414x-2466383\)
32487.q1 32487.q \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $1$ $\mathsf{trivial}$ $2.043068911$ $[0, 1, 1, -1114766, -656107273]$ \(y^2+y=x^3+x^2-1114766x-656107273\)
32487.r1 32487.r \( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -695032, -223242449]$ \(y^2+y=x^3+x^2-695032x-223242449\)
  Download to