Properties

Label 3240.e
Number of curves $1$
Conductor $3240$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 3240.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3240.e1 3240d1 \([0, 0, 0, -8532, 303156]\) \(4543847424/3125\) \(47239200000\) \([]\) \(2880\) \(0.98547\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3240.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3240.e do not have complex multiplication.

Modular form 3240.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{11} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display