Properties

Label 3240.d
Number of curves $1$
Conductor $3240$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3240.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3240.d1 3240e1 \([0, 0, 0, -12, 4]\) \(9216/5\) \(103680\) \([]\) \(192\) \(-0.34664\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3240.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3240.d do not have complex multiplication.

Modular form 3240.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} - 3 q^{11} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display