Properties

Label 3240.c
Number of curves $1$
Conductor $3240$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 3240.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3240.c1 3240a1 \([0, 0, 0, -948, -11228]\) \(4543847424/3125\) \(64800000\) \([]\) \(960\) \(0.43616\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3240.c1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3240.c do not have complex multiplication.

Modular form 3240.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{11} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display