# Properties

 Label 32370.bk Number of curves 2 Conductor 32370 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("32370.bk1")

sage: E.isogeny_class()

## Elliptic curves in class 32370.bk

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
32370.bk1 32370bk2 [1, 0, 0, -1546933295, -23418435858105] [] 6991712
32370.bk2 32370bk1 [1, 0, 0, -1330145, 291422025]  998816 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 32370.bk have rank $$1$$.

## Modular form 32370.2.a.bk

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 2q^{11} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} - 3q^{17} + q^{18} - 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 