Properties

Label 32368a
Number of curves $4$
Conductor $32368$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 32368a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 32368a do not have complex multiplication.

Modular form 32368.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{7} - 3 q^{9} - 4 q^{11} + 2 q^{13} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 32368a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32368.q4 32368a1 \([0, 0, 0, 289, -9826]\) \(432/7\) \(-43254523648\) \([2]\) \(18432\) \(0.72143\) \(\Gamma_0(N)\)-optimal
32368.q3 32368a2 \([0, 0, 0, -5491, -147390]\) \(740772/49\) \(1211126662144\) \([2, 2]\) \(36864\) \(1.0680\)  
32368.q2 32368a3 \([0, 0, 0, -17051, 677994]\) \(11090466/2401\) \(118690412890112\) \([2]\) \(73728\) \(1.4146\)  
32368.q1 32368a4 \([0, 0, 0, -86411, -9776870]\) \(1443468546/7\) \(346036189184\) \([2]\) \(73728\) \(1.4146\)