Show commands for:
SageMath
sage: E = EllipticCurve("q1")
sage: E.isogeny_class()
Elliptic curves in class 32368.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
32368.q1 | 32368a4 | [0, 0, 0, -86411, -9776870] | [2] | 73728 | |
32368.q2 | 32368a3 | [0, 0, 0, -17051, 677994] | [2] | 73728 | |
32368.q3 | 32368a2 | [0, 0, 0, -5491, -147390] | [2, 2] | 36864 | |
32368.q4 | 32368a1 | [0, 0, 0, 289, -9826] | [2] | 18432 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 32368.q have rank \(1\).
Complex multiplication
The elliptic curves in class 32368.q do not have complex multiplication.Modular form 32368.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.