Minimal Weierstrass equation
\(y^2=x^3-x^2-21968x+982332\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(166, 1372\right)\)
|
$\hat{h}(P)$ | ≈ | $1.2941977679408277534694629033$ |
Torsion generators
\( \left(117, 0\right) \)
Integral points
\( \left(117, 0\right) \), \((153,\pm 1086)\), \((166,\pm 1372)\), \((502,\pm 10780)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 323400 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $267855713664000 $ | = | $2^{10} \cdot 3 \cdot 5^{3} \cdot 7^{8} \cdot 11^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{77860436}{17787} \) | = | $2^{2} \cdot 3^{-1} \cdot 7^{-2} \cdot 11^{-2} \cdot 269^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.4809456394899238725635686295\dots$ | ||
Stable Faltings height: | $-0.47199156361287896482032434341\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.2941977679408277534694629033\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.51904854153475748345728330798\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 32 $ = $ 2\cdot1\cdot2\cdot2^{2}\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 5.3740117112578012900056206950 $ |
Modular invariants
Modular form 323400.2.a.ct
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 884736 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | Additive | -1 | 3 | 10 | 0 |
$3$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
$5$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
$7$ | $4$ | $I_{2}^{*}$ | Additive | -1 | 2 | 8 | 2 |
$11$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 323400.ct
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$4$ | 4.4.8893500.1 | \(\Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.8.11389585284000000.10 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.