# Properties

 Label 32340.u Number of curves $2$ Conductor $32340$ CM no Rank $1$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("u1")

sage: E.isogeny_class()

## Elliptic curves in class 32340.u

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32340.u1 32340r2 $$[0, -1, 0, -940, 4600]$$ $$1047213232/515625$$ $$45276000000$$ $$$$ $$23040$$ $$0.73785$$
32340.u2 32340r1 $$[0, -1, 0, 215, 442]$$ $$199344128/136125$$ $$-747054000$$ $$$$ $$11520$$ $$0.39127$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 32340.u have rank $$1$$.

## Complex multiplication

The elliptic curves in class 32340.u do not have complex multiplication.

## Modular form 32340.2.a.u

sage: E.q_eigenform(10)

$$q - q^{3} + q^{5} + q^{9} + q^{11} + 2q^{13} - q^{15} - 2q^{17} + 6q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 