Minimal Weierstrass equation
\(y^2=x^3-x^2-485x+3585\)
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \(\left(7, 22\right)\) ![]() |
\(\hat{h}(P)\) | ≈ | $0.36983879089144559087802487061$ |
Integral points
\((-8,\pm 83)\), \((7,\pm 22)\), \((51,\pm 330)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 32340 \) | = | \(2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(2253968640 \) | = | \(2^{8} \cdot 3^{3} \cdot 5 \cdot 7^{2} \cdot 11^{3} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{1007878144}{179685} \) | = | \(2^{16} \cdot 3^{-3} \cdot 5^{-1} \cdot 7 \cdot 11^{-3} \cdot 13^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(0.51398090993530586416559398797\dots\) | ||
Stable Faltings height: | \(-0.27243556861387655963011955024\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.36983879089144559087802487061\dots\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(1.3897940913519513706356636623\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 9 \) = \( 3\cdot1\cdot1\cdot1\cdot3 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 32340.2.a.r

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 15552 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 4.6259978970031287661688700976581291334 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(IV^{*}\) | Additive | -1 | 2 | 8 | 0 |
\(3\) | \(1\) | \(I_{3}\) | Non-split multiplicative | 1 | 1 | 3 | 3 |
\(5\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
\(7\) | \(1\) | \(II\) | Additive | -1 | 2 | 2 | 0 |
\(11\) | \(3\) | \(I_{3}\) | Split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B |
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | split | add | split | ordinary | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | - | 3 | 2 | - | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 32340.r
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.3.32340.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.6.172569474000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$6$ | 6.2.4537890000.1 | \(\Z/3\Z\) | Not in database |
$6$ | 6.0.7321129200.1 | \(\Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$18$ | 18.0.4908405638827814192488846480456924211275200000000.2 | \(\Z/9\Z\) | Not in database |
$18$ | 18.6.4138643444140345173142725000000000000.1 | \(\Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.