Properties

Label 32340.o
Number of curves $1$
Conductor $32340$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32340.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32340.o1 32340h1 \([0, -1, 0, 670, -14475]\) \(864545024/2784375\) \(-106964550000\) \([]\) \(28800\) \(0.79949\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32340.o1 has rank \(1\).

Complex multiplication

The elliptic curves in class 32340.o do not have complex multiplication.

Modular form 32340.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - q^{11} + q^{13} - q^{15} + 6q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display