Properties

Label 32340.k
Number of curves $1$
Conductor $32340$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 32340.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
32340.k1 32340l1 \([0, -1, 0, -1045, -15455]\) \(-4194304/1155\) \(-34786456320\) \([]\) \(23040\) \(0.73857\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 32340.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 32340.k do not have complex multiplication.

Modular form 32340.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - q^{11} - q^{15} - 3q^{17} + q^{19} + O(q^{20})\)  Toggle raw display