Show commands:
SageMath
E = EllipticCurve("bb1")
E.isogeny_class()
Elliptic curves in class 322530.bb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
322530.bb1 | 322530bb2 | \([1, 0, 0, -32057602950, -2204027200028100]\) | \(3643483851824804802367372393822504801/9960778515925329882659257650600\) | \(9960778515925329882659257650600\) | \([]\) | \(929359872\) | \(4.8214\) | |
322530.bb2 | 322530bb1 | \([1, 0, 0, -1855549950, 30764846002500]\) | \(706547983592544968099969232472801/300959193600000000000000\) | \(300959193600000000000000\) | \([7]\) | \(132765696\) | \(3.8484\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 322530.bb have rank \(1\).
Complex multiplication
The elliptic curves in class 322530.bb do not have complex multiplication.Modular form 322530.2.a.bb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.