Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 3211.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3211.a1 | 3211a3 | \([0, 1, 1, -130017, -18088053]\) | \(-50357871050752/19\) | \(-91709371\) | \([]\) | \(6480\) | \(1.3159\) | |
3211.a2 | 3211a2 | \([0, 1, 1, -1577, -26178]\) | \(-89915392/6859\) | \(-33107082931\) | \([]\) | \(2160\) | \(0.76661\) | |
3211.a3 | 3211a1 | \([0, 1, 1, 113, 17]\) | \(32768/19\) | \(-91709371\) | \([]\) | \(720\) | \(0.21730\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3211.a have rank \(1\).
Complex multiplication
The elliptic curves in class 3211.a do not have complex multiplication.Modular form 3211.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.