Properties

Label 320a
Number of curves 4
Conductor 320
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("320.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 320a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
320.d3 320a1 [0, 0, 0, -8, -8] [2] 16 \(\Gamma_0(N)\)-optimal
320.d2 320a2 [0, 0, 0, -28, 48] [2, 2] 32  
320.d1 320a3 [0, 0, 0, -428, 3408] [2] 64  
320.d4 320a4 [0, 0, 0, 52, 272] [2] 64  

Rank

sage: E.rank()
 

The elliptic curves in class 320a have rank \(0\).

Modular form 320.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{5} + 4q^{7} - 3q^{9} + 4q^{11} + 2q^{13} + 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.