Minimal Weierstrass equation
\(y^2+xy=x^3-244211x+159884385\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(-146, 13945\right) \) |
\(\hat{h}(P)\) | ≈ | $0.48922959404301886079724828716$ |
Torsion generators
\( \left(-690, 345\right) \)
Integral points
\( \left(-690, 345\right) \), \( \left(-146, 13945\right) \), \( \left(-146, -13799\right) \), \( \left(334, 10585\right) \), \( \left(334, -10919\right) \), \( \left(466, 11905\right) \), \( \left(466, -12371\right) \), \( \left(1486, 54745\right) \), \( \left(1486, -56231\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 320790 \) | = | \(2 \cdot 3 \cdot 5 \cdot 17^{2} \cdot 37\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-10113906190476902400 \) | = | \(-1 \cdot 2^{24} \cdot 3^{3} \cdot 5^{2} \cdot 17^{6} \cdot 37 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{66730743078481}{419010969600} \) | = | \(-1 \cdot 2^{-24} \cdot 3^{-3} \cdot 5^{-2} \cdot 37^{-1} \cdot 47^{3} \cdot 863^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.48922959404301886079724828716\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.19745170603861247588972116922\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 576 \) = \( ( 2^{3} \cdot 3 )\cdot3\cdot2\cdot2^{2}\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 320790.2.a.ci
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 8847360 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 13.910287390325550339712896315081380702 \)
Local data
This elliptic curve is semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(24\) | \(I_{24}\) | Split multiplicative | -1 | 1 | 24 | 24 |
\(3\) | \(3\) | \(I_{3}\) | Split multiplicative | -1 | 1 | 3 | 3 |
\(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(17\) | \(4\) | \(I_0^{*}\) | Additive | 1 | 2 | 6 | 0 |
\(37\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class 320790ci
consists of 6 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-111}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-1887}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{17}, \sqrt{-111})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{17}, \sqrt{185})\) | \(\Z/8\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-15}, \sqrt{17})\) | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.7924422419600625.13 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.