Properties

Label 31939d
Number of curves $1$
Conductor $31939$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 31939d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31939.c1 31939d1 \([0, -1, 1, -27, -69]\) \(-32768/19\) \(-1309499\) \([]\) \(2800\) \(-0.12348\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 31939d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 31939d do not have complex multiplication.

Modular form 31939.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2q^{4} + 2q^{5} + 2q^{7} - 2q^{9} - 2q^{11} + 2q^{12} + 5q^{13} - 2q^{15} + 4q^{16} + 4q^{17} + q^{19} + O(q^{20})\)  Toggle raw display