Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 3192l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3192.j1 | 3192l1 | \([0, -1, 0, -152, 732]\) | \(381775972/25137\) | \(25740288\) | \([2]\) | \(1152\) | \(0.17157\) | \(\Gamma_0(N)\)-optimal |
3192.j2 | 3192l2 | \([0, -1, 0, 128, 2860]\) | \(112363774/1842183\) | \(-3772790784\) | \([2]\) | \(2304\) | \(0.51814\) |
Rank
sage: E.rank()
The elliptic curves in class 3192l have rank \(1\).
Complex multiplication
The elliptic curves in class 3192l do not have complex multiplication.Modular form 3192.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.