Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 3192f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3192.n2 | 3192f1 | \([0, 1, 0, -28, 32]\) | \(9826000/2793\) | \(715008\) | \([2]\) | \(384\) | \(-0.16995\) | \(\Gamma_0(N)\)-optimal |
3192.n1 | 3192f2 | \([0, 1, 0, -168, -864]\) | \(515150500/22743\) | \(23288832\) | \([2]\) | \(768\) | \(0.17662\) |
Rank
sage: E.rank()
The elliptic curves in class 3192f have rank \(0\).
Complex multiplication
The elliptic curves in class 3192f do not have complex multiplication.Modular form 3192.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.