Properties

Label 3192f
Number of curves $2$
Conductor $3192$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 3192f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3192.n2 3192f1 \([0, 1, 0, -28, 32]\) \(9826000/2793\) \(715008\) \([2]\) \(384\) \(-0.16995\) \(\Gamma_0(N)\)-optimal
3192.n1 3192f2 \([0, 1, 0, -168, -864]\) \(515150500/22743\) \(23288832\) \([2]\) \(768\) \(0.17662\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3192f have rank \(0\).

Complex multiplication

The elliptic curves in class 3192f do not have complex multiplication.

Modular form 3192.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + 6 q^{11} + 4 q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.