Properties

Label 3192.a
Number of curves $2$
Conductor $3192$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3192.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3192.a1 3192m1 \([0, -1, 0, -106435, -13329764]\) \(8334147900493981696/232793757\) \(3724700112\) \([2]\) \(11520\) \(1.3474\) \(\Gamma_0(N)\)-optimal
3192.a2 3192m2 \([0, -1, 0, -106300, -13365404]\) \(-518904725785387216/2753286252003\) \(-704841280512768\) \([2]\) \(23040\) \(1.6940\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3192.a have rank \(1\).

Complex multiplication

The elliptic curves in class 3192.a do not have complex multiplication.

Modular form 3192.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - q^{7} + q^{9} - 2 q^{13} + 4 q^{15} + 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.