Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3+x^2-2260076x-1308527588\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+x^2z-2260076xz^2-1308527588z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2929058928x-61015514428656\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(298301765/7396, 5148525445821/636056)$ | $16.701702614164457728603193587$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 3179 \) | = | $11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-265513259$ | = | $-1 \cdot 11 \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( -\frac{52893159101157376}{11} \) | = | $-1 \cdot 2^{12} \cdot 11^{-1} \cdot 29^{3} \cdot 809^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9133157871267551627361327141$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.49670911509864712261136540516$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0929566831983986$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.882950698303083$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $16.701702614164457728603193587$ |
|
Real period: | $\Omega$ | ≈ | $0.061565694383074162378503813312$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.0565038376412796188220727333 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.056503838 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.061566 \cdot 16.701703 \cdot 2}{1^2} \\ & \approx 2.056503838\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 25600 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.2 | 25.60.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9350 = 2 \cdot 5^{2} \cdot 11 \cdot 17 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 38 & 41 \\ 6791 & 6589 \end{array}\right),\left(\begin{array}{rr} 6049 & 0 \\ 0 & 9349 \end{array}\right),\left(\begin{array}{rr} 9301 & 50 \\ 9300 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8586 & 3995 \\ 1615 & 766 \end{array}\right),\left(\begin{array}{rr} 5390 & 3859 \\ 5627 & 5713 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9350])$ is a degree-$1551052800000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9350\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$11$ | nonsplit multiplicative | $12$ | \( 289 = 17^{2} \) |
$17$ | additive | $146$ | \( 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5 and 25.
Its isogeny class 3179c
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11a2, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.0.36125.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.2674331311707.3 | \(\Z/3\Z\) | not in database |
$10$ | 10.2.2972255446289228515625.1 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
$20$ | 20.0.269601514831420317916670465751667506992816925048828125.1 | \(\Z/25\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | ord | ord | nonsplit | ord | add | ss | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 8,9 | 1 | 3 | 1 | 1 | 3 | - | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | 2 | 0 | 0 | 0 | - | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.