Properties

Label 3179.a
Number of curves 3
Conductor 3179
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("3179.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3179.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3179.a1 3179c3 [0, 1, 1, -2260076, -1308527588] [] 25600  
3179.a2 3179c2 [0, 1, 1, -2986, -114768] [] 5120  
3179.a3 3179c1 [0, 1, 1, -96, 832] [] 1024 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3179.a have rank \(1\).

Modular form 3179.2.a.a

sage: E.q_eigenform(10)
 
\( q - 2q^{2} + q^{3} + 2q^{4} - q^{5} - 2q^{6} + 2q^{7} - 2q^{9} + 2q^{10} - q^{11} + 2q^{12} + 4q^{13} - 4q^{14} - q^{15} - 4q^{16} + 4q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.