Properties

Label 31680.cj
Number of curves $4$
Conductor $31680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 31680.cj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 31680.cj do not have complex multiplication.

Modular form 31680.2.a.cj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} + q^{11} + 6 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 31680.cj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
31680.cj1 31680ca4 \([0, 0, 0, -1134732, 458163056]\) \(3382175663521924/59189241375\) \(2827810043486208000\) \([2]\) \(786432\) \(2.3371\)  
31680.cj2 31680ca2 \([0, 0, 0, -144732, -10304944]\) \(28071778927696/12404390625\) \(148157247744000000\) \([2, 2]\) \(393216\) \(1.9905\)  
31680.cj3 31680ca1 \([0, 0, 0, -122952, -16586296]\) \(275361373935616/148240125\) \(110660660352000\) \([2]\) \(196608\) \(1.6439\) \(\Gamma_0(N)\)-optimal
31680.cj4 31680ca3 \([0, 0, 0, 496788, -76766416]\) \(283811208976796/217529296875\) \(-10392624000000000000\) \([2]\) \(786432\) \(2.3371\)