Show commands for:
SageMath
sage: E = EllipticCurve("il1")
sage: E.isogeny_class()
Elliptic curves in class 316050.il
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
316050.il1 | 316050il4 | [1, 0, 0, -1027188, -398056758] | [2] | 5308416 | |
316050.il2 | 316050il2 | [1, 0, 0, -108438, 3436992] | [2, 2] | 2654208 | |
316050.il3 | 316050il1 | [1, 0, 0, -83938, 9341492] | [2] | 1327104 | \(\Gamma_0(N)\)-optimal |
316050.il4 | 316050il3 | [1, 0, 0, 418312, 27140742] | [2] | 5308416 |
Rank
sage: E.rank()
The elliptic curves in class 316050.il have rank \(1\).
Complex multiplication
The elliptic curves in class 316050.il do not have complex multiplication.Modular form 316050.2.a.il
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.