Properties

Label 3150w
Number of curves $4$
Conductor $3150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("3150.bb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3150w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.bb2 3150w1 [1, -1, 1, -2630, 52497] [2] 2304 \(\Gamma_0(N)\)-optimal
3150.bb3 3150w2 [1, -1, 1, -1880, 82497] [2] 4608  
3150.bb1 3150w3 [1, -1, 1, -10505, -360503] [2] 6912  
3150.bb4 3150w4 [1, -1, 1, 16495, -1926503] [2] 13824  

Rank

sage: E.rank()
 

The elliptic curves in class 3150w have rank \(0\).

Modular form 3150.2.a.bb

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} - q^{7} + q^{8} - 2q^{13} - q^{14} + q^{16} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.