Properties

Label 3150br
Number of curves $2$
Conductor $3150$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("br1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3150br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3150.bg2 3150br1 \([1, -1, 1, 220, 47]\) \(2595575/1512\) \(-688905000\) \([]\) \(1728\) \(0.38532\) \(\Gamma_0(N)\)-optimal
3150.bg1 3150br2 \([1, -1, 1, -3155, 72947]\) \(-7620530425/526848\) \(-240045120000\) \([3]\) \(5184\) \(0.93462\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3150br have rank \(1\).

Complex multiplication

The elliptic curves in class 3150br do not have complex multiplication.

Modular form 3150.2.a.br

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} - 6q^{11} - q^{13} + q^{14} + q^{16} - 3q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.