# Properties

 Label 3150.y Number of curves 2 Conductor 3150 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("3150.y1")

sage: E.isogeny_class()

## Elliptic curves in class 3150.y

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.y1 3150bp1 [1, -1, 1, -39380, 3017697] [] 4800 $$\Gamma_0(N)$$-optimal
3150.y2 3150bp2 [1, -1, 1, 4945, 9279447] [] 24000

## Rank

sage: E.rank()

The elliptic curves in class 3150.y have rank $$0$$.

## Modular form3150.2.a.y

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} - q^{7} + q^{8} - 2q^{11} + q^{13} - q^{14} + q^{16} + 3q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.