Properties

Label 3150.r
Number of curves 1
Conductor 3150
CM no
Rank 0

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("3150.r1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3150.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.r1 3150t1 [1, -1, 0, -1416492, 649694416] [] 91200 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3150.r1 has rank \(0\).

Modular form 3150.2.a.r

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} + q^{7} - q^{8} + 2q^{11} + 7q^{13} - q^{14} + q^{16} + 7q^{17} + 8q^{19} + O(q^{20}) \)