# Properties

 Label 3150.k Number of curves 2 Conductor 3150 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("3150.k1")

sage: E.isogeny_class()

## Elliptic curves in class 3150.k

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.k1 3150g2 [1, -1, 0, -36492, 2690666]  11520
3150.k2 3150g1 [1, -1, 0, -2742, 24416]  5760 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 3150.k have rank $$0$$.

## Modular form3150.2.a.k

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} - q^{7} - q^{8} + 6q^{11} + 2q^{13} + q^{14} + q^{16} + 2q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 