# Properties

 Label 3150.bm Number of curves 2 Conductor 3150 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("3150.bm1")

sage: E.isogeny_class()

## Elliptic curves in class 3150.bm

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.bm1 3150bc1 [1, -1, 1, -1430, 21197]  1440 $$\Gamma_0(N)$$-optimal
3150.bm2 3150bc2 [1, -1, 1, 2320, 101197] [] 4320

## Rank

sage: E.rank()

The elliptic curves in class 3150.bm have rank $$0$$.

## Modular form3150.2.a.bm

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} + q^{7} + q^{8} - q^{13} + q^{14} + q^{16} + 3q^{17} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 