Properties

Label 3150.bk
Number of curves 2
Conductor 3150
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("3150.bk1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3150.bk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3150.bk1 3150bq1 [1, -1, 1, -725, -723] [2] 3072 \(\Gamma_0(N)\)-optimal
3150.bk2 3150bq2 [1, -1, 1, 2875, -7923] [2] 6144  

Rank

sage: E.rank()
 

The elliptic curves in class 3150.bk have rank \(1\).

Modular form 3150.2.a.bk

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} + q^{7} + q^{8} - 2q^{11} - 6q^{13} + q^{14} + q^{16} + 4q^{17} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.