Properties

Label 3150.bj
Number of curves $4$
Conductor $3150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3150.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3150.bj do not have complex multiplication.

Modular form 3150.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} - 4 q^{11} + 6 q^{13} + q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3150.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3150.bj1 3150bm4 \([1, -1, 1, -60230, 5704147]\) \(2121328796049/120050\) \(1367444531250\) \([2]\) \(12288\) \(1.3930\)  
3150.bj2 3150bm3 \([1, -1, 1, -19730, -991853]\) \(74565301329/5468750\) \(62292480468750\) \([2]\) \(12288\) \(1.3930\)  
3150.bj3 3150bm2 \([1, -1, 1, -3980, 79147]\) \(611960049/122500\) \(1395351562500\) \([2, 2]\) \(6144\) \(1.0464\)  
3150.bj4 3150bm1 \([1, -1, 1, 520, 7147]\) \(1367631/2800\) \(-31893750000\) \([2]\) \(3072\) \(0.69987\) \(\Gamma_0(N)\)-optimal