Properties

Label 315.a
Number of curves $4$
Conductor $315$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 315.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
315.a1 315b3 \([1, -1, 1, -1013, 12656]\) \(157551496201/13125\) \(9568125\) \([2]\) \(128\) \(0.38334\)  
315.a2 315b2 \([1, -1, 1, -68, 182]\) \(47045881/11025\) \(8037225\) \([2, 2]\) \(64\) \(0.036770\)  
315.a3 315b1 \([1, -1, 1, -23, -34]\) \(1771561/105\) \(76545\) \([2]\) \(32\) \(-0.30980\) \(\Gamma_0(N)\)-optimal
315.a4 315b4 \([1, -1, 1, 157, 992]\) \(590589719/972405\) \(-708883245\) \([2]\) \(128\) \(0.38334\)  

Rank

sage: E.rank()
 

The elliptic curves in class 315.a have rank \(1\).

Complex multiplication

The elliptic curves in class 315.a do not have complex multiplication.

Modular form 315.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + q^{7} + 3 q^{8} + q^{10} - 6 q^{13} - q^{14} - q^{16} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.