Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 315.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
315.a1 | 315b3 | \([1, -1, 1, -1013, 12656]\) | \(157551496201/13125\) | \(9568125\) | \([2]\) | \(128\) | \(0.38334\) | |
315.a2 | 315b2 | \([1, -1, 1, -68, 182]\) | \(47045881/11025\) | \(8037225\) | \([2, 2]\) | \(64\) | \(0.036770\) | |
315.a3 | 315b1 | \([1, -1, 1, -23, -34]\) | \(1771561/105\) | \(76545\) | \([2]\) | \(32\) | \(-0.30980\) | \(\Gamma_0(N)\)-optimal |
315.a4 | 315b4 | \([1, -1, 1, 157, 992]\) | \(590589719/972405\) | \(-708883245\) | \([2]\) | \(128\) | \(0.38334\) |
Rank
sage: E.rank()
The elliptic curves in class 315.a have rank \(1\).
Complex multiplication
The elliptic curves in class 315.a do not have complex multiplication.Modular form 315.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.