Properties

Label 3136s1
Conductor $3136$
Discriminant $-13492928512$
j-invariant \( \frac{432}{7} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 196, 5488])
 
gp: E = ellinit([0, 0, 0, 196, 5488])
 
magma: E := EllipticCurve([0, 0, 0, 196, 5488]);
 

\(y^2=x^3+196x+5488\)  Toggle raw display

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(-6, 64\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $1.9330572333397874665166854078$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-14, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-14, 0\right) \), \((-6,\pm 64)\), \((84,\pm 784)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 3136 \)  =  \(2^{6} \cdot 7^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-13492928512 \)  =  \(-1 \cdot 2^{14} \cdot 7^{7} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{432}{7} \)  =  \(2^{4} \cdot 3^{3} \cdot 7^{-1}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(0.62434865744909650949751677400\dots\)
Stable Faltings height: \(-1.1572781277318296707085970728\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1.9330572333397874665166854078\dots\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.93493147424956756866377454482\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 8 \)  = \( 2^{2}\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form   3136.2.a.p

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + 2q^{5} - 3q^{9} - 4q^{11} + 2q^{13} + 6q^{17} - 8q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1536
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 3.6145520979503156654594075894304716037 \)

Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \(I_4^{*}\) Additive -1 6 14 0
\(7\) \(2\) \(I_1^{*}\) Additive -1 2 7 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X34c.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 3 \\ 4 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 7 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ss ordinary add ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - 7,3 1 - 1 1 1 1 1,1 1 1 1 1 1 1
$\mu$-invariant(s) - 0,0 0 - 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 3136s consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-7}) \) \(\Z/2\Z \times \Z/2\Z\) 2.0.7.1-28672.7-m2
$2$ \(\Q(\sqrt{14}) \) \(\Z/4\Z\) 2.2.56.1-56.1-b2
$2$ \(\Q(\sqrt{-2}) \) \(\Z/4\Z\) 2.0.8.1-19208.1-d1
$4$ \(\Q(\sqrt{-2}, \sqrt{-7})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.1927561216.7 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.4.157351936.1 \(\Z/8\Z\) Not in database
$8$ 8.0.7710244864.1 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.2.16862305517568.25 \(\Z/6\Z\) Not in database
$16$ 16.0.59447875862838378496.4 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ 16.0.24759631762948096.2 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.