Properties

 Label 3136e Number of curves $4$ Conductor $3136$ CM no Rank $0$ Graph

Related objects

Show commands: SageMath
sage: E = EllipticCurve("e1")

sage: E.isogeny_class()

Elliptic curves in class 3136e

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3136.q4 3136e1 $$[0, 0, 0, 196, -5488]$$ $$432/7$$ $$-13492928512$$ $$[2]$$ $$1536$$ $$0.62435$$ $$\Gamma_0(N)$$-optimal
3136.q3 3136e2 $$[0, 0, 0, -3724, -82320]$$ $$740772/49$$ $$377801998336$$ $$[2, 2]$$ $$3072$$ $$0.97092$$
3136.q1 3136e3 $$[0, 0, 0, -58604, -5460560]$$ $$1443468546/7$$ $$107943428096$$ $$[2]$$ $$6144$$ $$1.3175$$
3136.q2 3136e4 $$[0, 0, 0, -11564, 378672]$$ $$11090466/2401$$ $$37024595836928$$ $$[2]$$ $$6144$$ $$1.3175$$

Rank

sage: E.rank()

The elliptic curves in class 3136e have rank $$0$$.

Complex multiplication

The elliptic curves in class 3136e do not have complex multiplication.

Modular form3136.2.a.e

sage: E.q_eigenform(10)

$$q + 2q^{5} - 3q^{9} + 4q^{11} + 2q^{13} + 6q^{17} + 8q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.