# Properties

 Label 3136.q Number of curves $4$ Conductor $3136$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("q1")

sage: E.isogeny_class()

## Elliptic curves in class 3136.q

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3136.q1 3136e3 [0, 0, 0, -58604, -5460560] [2] 6144
3136.q2 3136e4 [0, 0, 0, -11564, 378672] [2] 6144
3136.q3 3136e2 [0, 0, 0, -3724, -82320] [2, 2] 3072
3136.q4 3136e1 [0, 0, 0, 196, -5488] [2] 1536 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 3136.q have rank $$0$$.

## Complex multiplication

The elliptic curves in class 3136.q do not have complex multiplication.

## Modular form3136.2.a.q

sage: E.q_eigenform(10)

$$q + 2q^{5} - 3q^{9} + 4q^{11} + 2q^{13} + 6q^{17} + 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.