Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-58604x+5460560\)
|
(homogenize, simplify) |
\(y^2z=x^3-58604xz^2+5460560z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-58604x+5460560\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(28, 1960\right)\)
|
$\hat{h}(P)$ | ≈ | $1.9330572333397874665166854078$ |
Torsion generators
\( \left(140, 0\right) \)
Integral points
\((28,\pm 1960)\), \( \left(140, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 3136 \) | = | $2^{6} \cdot 7^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $107943428096 $ | = | $2^{17} \cdot 7^{7} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{1443468546}{7} \) | = | $2 \cdot 3^{3} \cdot 7^{-1} \cdot 13^{3} \cdot 23^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.3174958380090418189147488955\dots$ | ||
Stable Faltings height: | $-0.63741774231187068864567298162\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.9330572333397874665166854078\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.93493147424956756866377454482\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 8 $ = $ 2\cdot2^{2} $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 3.6145520979503156654594075894 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 6144 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{7}^{*}$ | Additive | -1 | 6 | 17 | 0 |
$7$ | $4$ | $I_{1}^{*}$ | Additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.111 |
The image of the adelic Galois representation has level $56$, index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 32 & 53 \\ 27 & 54 \end{array}\right),\left(\begin{array}{rr} 49 & 8 \\ 48 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 48 & 13 \\ 45 & 16 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 50 & 51 \end{array}\right),\left(\begin{array}{rr} 32 & 55 \\ 29 & 42 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | add | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 7,3 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 3136.p
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.56.1-56.1-b5 |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.493455671296.14 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.8.40282095616.2 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.1927561216.8 | \(\Z/8\Z\) | Not in database |
$8$ | 8.2.16862305517568.25 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | 16.0.59447875862838378496.3 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.