Properties

Label 3136.bc
Number of curves $1$
Conductor $3136$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3136.bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3136.bc1 3136q1 [0, 0, 0, -1372, 19208] [] 2688 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3136.bc1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3136.bc do not have complex multiplication.

Modular form 3136.2.a.bc

sage: E.q_eigenform(10)
 
\( q + 3q^{3} + q^{5} + 6q^{9} - q^{11} - 2q^{13} + 3q^{15} + 3q^{17} + 5q^{19} + O(q^{20}) \)