Properties

Label 3136.bb
Number of curves $1$
Conductor $3136$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3136.bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3136.bb1 3136n1 [0, 0, 0, -28, 56] [] 384 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3136.bb1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3136.bb do not have complex multiplication.

Modular form 3136.2.a.bb

sage: E.q_eigenform(10)
 
\( q + 3q^{3} - q^{5} + 6q^{9} + q^{11} + 2q^{13} - 3q^{15} - 3q^{17} + 5q^{19} + O(q^{20}) \)